S e

Vs’

Technical University of Madrid(UPM)

() IMDEA Software Institute | dea

Runtime Verification Challenges [Pt

in the context of (Constraint) Logic Programming [i fretos

manuel.hermenegildo}@imdea.org

Context

Runtime verification: Currently in most (C)LP systems not much can be specified about the
A technique that detects errors in programs, based on: predicate arguments of higher-order predicates, yet higher-order calls
» Providing a specification for the program. are commonly used:
N Observing the behaviour OF the running pr09ram. R R R R RREEE R RRRE .

. ¥ A R a simple higher-order program - - - - - - - - :
» Detecting (and reacting to) any violations of the specified behaviour. ‘% ‘old’ specification: argument Cmp of predicate min/4 can be called *

g:- pred min(X,Y,Cmp,M) : callable(Cmp). :
Some research challenges: o Imin(X,Y,Cnp,M) - Crp(R,X,Y), R <= 0, M = X. % rule <
(a)Enhancing existing Formalisms and specification languages. min(X,Y,_ L), % fact ;
. . . ' higher-order

(b)Reducing run-time overhead: less(0,A,A). 7l 16(’=",A,A)
» Optimising program instrumentation. Rt e T s hBy i A :

We introduce the notion of predicate properties (like comparator/1
below) that reuse Ciao assertion language to describe predicate

(Constraint) Logic Programming: arguments that are bound predicates themselves:

»Programs are expressed in terms of relations (facts, rules).

»Computation is initiated by running query on those relations. % ‘new’ specification: call and success patterns of a predicate
»Higher-order programming is supported (patterns, templates, passing % that is bound to the (mp vartable

relations as arguments). : % precondition oo
. % postcondition .

Experimental setting: *:- pred min(X,Y,Cmp,M) : comparator(Cmp).)
o)

» Prolog-based multi-paradigm language. e e e e et e ettt e ettt Do,

»Rich assertion language for program specification. This allows to capture precisely call and success patterns SESZ(:%;;L%pPﬁ'ZSm ¢
Q. Availability of both compile time / runtime of higher-order calls and detect undesired and/or gixgm -
verification unexpected program behaviours. L*f,,,.,-“* t'..:!

ﬁh,,
(b) Faster Checks of Program Specifications —
" Runtime

Assertion-based runtime checking is costly: often pre- and postcondition . Parts of a program specification can be proved to hold true
checks are duplicated in recursive calls. Possible practical solution: cache . during compilation, thus there would be no need to check
already performed checks for properties of recursive data structures (lists, them at runtime. In our work we perform static analysis
trees, etc.) up to some depth D and look up the results on demand. . (based on the abstract interpretation technique) at compile

.. . time that checks specifications of variable sharing, variable

;EE‘ELR) . L), t(R). 99 D= 1 freeness and terms shape (and many other properties).

gt(t(e,19,t(e,3,e)),99,t(t(e,25:e):35’t(e’1’e))) 19’ ‘36 D=2 We study runtime checking overhead decrease in the

ét(t(;.),99, y . g 4 ,4 . following 4 practical scenarios:

e t(,3,) t(,25,) t(,1,) : i D=3 . » no checks (baseline performance, no safety guarantees);
TR TR SR S SR : » checks only for public program interface (minimal overhead

Current experimental outcomes: and safety guarantees);

cache size = 256, check depth limit = inf cache size = 256, check depth limit = 2 cache size = 256, check depth limit = 1 .

» relatively small cache size can N - » checks For both public and private program predicates
be used (~250 elements) to T I+ (maximal overhead and safety guarantees);
gain overhead reduction; |/ _ »checks for the
. . Lies =TS Cg e ease : Unsafe Client-safe Safe-RT Safe-CT-RT bl . t F d
» caching recursive data O e e mw o e e w0 e o mw public Interrace an
Number of insert operations Number of insert operations Number of insert operations E P ro g ram P ro g ram P ro gra m P I’Ogra m
structures up to termdepth2 M o] o [rl e Rk R h for the
. . 2 2C 2r : .Ce .
yIEldS 1_2 Orders OF magnItUde test = min-heap, check depth limit = 2 test = min-heap, cache size = 256, test = min-heap, cache size = 256, é SpeCIflcatlonS OF
runtime overhead reduction I | I s s < B Y e e B R e S T private predicates
. 2 Cache sve 236 103 foi L Lt "é E // . (exports) (all) (reduced)
(see Fig. 1c VS 1l and 1r); | gwf T e] : - T | : that were not
. I e O D T : T . : :
» the slowdown ratio of . — fwh o de] : w5700 Y . proved at compile
programs with run-time checks .0 L[lweeem [7 b [: : time.
" bt msopentons " s of e cpatons " Nunberofmencpuntions Program = e > Program
using caching is D |[Cote Code | Code
ko e 1 1 T : | Reducing the Overhead
snoieckingvia - almost constant, in contrast with the linear growth in the case : : of Assertion Runtime
Caching h h- . t d F. 2'_ 2 d 2 . Assertions Assel:t.ion i Assgl_':.ion " Chei(sa"l';sitat'c
g4z Where caching is not use (see Fig. 21, 2c and 2r); g onditens) Py TR
“s?z'*’??* : : i 2 9 eRtiio
f“..ztd . | Static '9‘3- “f.ij’is %
g:;* X 20 .‘é' . —>< Normalizer > ‘—>< fipeltsic > 0 _8 ‘:::z "iza
| [E {E:‘E«x S —

This research has been partially funded by the EU FP7 agreement no 318337 ENTRA, Spanish MINECO TIN2012-39391 StrongSoft, TIN2008-05624 DOVES, Comunidad de Madrid TIC/1465 PROMETIDOS-CM, TIN2015-67522-C3-1-R TRACES projects, and the Madrid M141047003 N-GREENS program.

http://imdea.org
http://imdea.org

